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Drude Model
Electrons are point particles, which move 
through a static arrangement of positively 
charged ions (metal atoms stripped of valence 
electrons). The entire collection of electrons is 
modeled as a (classical) dilute ideal gas, using 
classical statistics.  Electrons are assumed not to 
interact and, in between collisions, the electrons 
and ions do not interact, i.e. it is a free electron 
model.  The Drude model had limited success 
experimentally.

Sommerfeld Model
The Sommerfeld model is essentially the same as 
the Drude model, except that quantum statistics 
is used.  This yields a significantly better model, 
showing that quantum mechanics is necessary for 
developing a successful model of metals.

Bloch Model
Two fundamental changes: the arrangement of 
ions has a (Bravais) lattice structure, i.e. a strict 
periodic arrangement; and an electron-ion 
interaction is represented by a periodic potential.  
Electrons are now matter waves rather than 
point particles (see figure 1).

The Semiclassical Model
This model is built upon the Bloch model, but 
electrons are now treated as wavepackets of 
single (free) electron plane waves (see figure 1).  
The Semiclassical model gives genuine physical 
insight into what is responsible for the division of 
solids into metals, such as gold, insulators, such 
as rubber, and semiconductors, such as silicon, 
which are fundamental to computer processors.

Models of Crystalline Solids: Metals

The four models motivate an 
account where mathematical 
modeling has five stages: 

Formulation: a selection of fundamental equations from 
theories, which is guided by the phenomenon

   of interest and available data.
Reduction: this base model is reduced, i.e. equations are 

simplified, to yield a tractable model.
Analysis: the equations of this reduced model are 

manipulated to study particular kinds of 
phenomena or model particular systems.

Calculation: approximate results are calculated and 
consistency checks are performed.

Interpretation: the results of the analysis are interpreted to 
describe and predict data and phenomena.

A Model of Models: The FRACI Model

The different models of solids 
represent the same 
phenomenon in incompatible 
ways, an example being the way 
an electron is modeled (see 
figure 1).  Despite the 
incompatibility, the Bloch and 
Semiclassical models are useful 
for understanding different 
aspects of a metal (or solid).  
The models are also 
interrelated in important ways, 
which yield insights into the 
phenomena (e.g. see figure 2).

Understanding through Incompatible Models

Problems with Considering the Model to Represent

How Can an Electron be both One and Many?

There may be a way to better 
understand structural 
representation if it can be 
shown that the mathematical 
simplifications (reductions) 
that enable the development 
of applicable models preserve 
structural information.  This 
could offer a way to explain 
how mathematical models 
represent the actual structure 
of physical systems, even 
though there is no clear 
structural relation between 
the model and the system 
modeled.  This may also yield 
insight into how mathematics 
connects to the natural 
world, particularly its features 
that are beyond our ability to 
experience.

Is there Room for Structural Representation?
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A model can represent a system either abstractly or 
structurally.  For understanding what solids are we are 
interested in structural representation.  
Do the applicable models represent the actual structure 
of the system?  
Do the models, e.g., tell us what pennies are really like? 

The way that the meaning of terms, like ‘electron,’ shifts 
between models, combined with the necessity to appeal 
to multiple models, obscures the way in which a model 
is supposed to represent structure. (see figure 1).  
How does it make sense for an electron to be 
a wavepacket of electrons?  This is compounded by 
the sheer complexity of the systems: A single penny has 
around one million billion billion electrons!

Despite this peculiar problem, the models yield genuine 
insight into the physics of the systems being investigated 
(e.g. insight into the distinction between metals and 
insulators (see Semiclassical model) and see figure 2).    If 
this characterization of the situation is right, it leads to a 
surprising result: 
Genuine physical understanding of a 
phenomenon is obtained from a collection of 
incompatible representations without a clear 
structural relationship to the systems 
modeled.  This reveals just how difficult the 
applicability problem is.

figure 1:  Models of electrons
in a 2D crystalline solid.

point particle
(classical free electron)
(Drude/Sommerfeld)

wavepacket of plane waves
(Semiclassical)

plane wave
(quantum free electron)

periodically varying 
plane wave
(Bloch)

figure 2:  A schematic representation of  the increasing scope of
progressively deeper models.  The plane represents the number
of phenomena successfully modeled; each deeper model accounts
for significantly more phenomena.

Does each arrow
(transformation) 
preserve structural
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crystalline solids

hydrogen atom
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isotropic universe

Physical theories enable us to accurately describe and 
predict phenomena that range from subatomic scales, to 
what we directly experience, to the structure and evolution 
of the universe.  The success of these theories exposes a 
very strong connection between abstract mathematical 
structures and natural phenomena, which makes accounting 
for the descriptive power of mathematics a deep 
philosophical problem.

Mathematical models enable us to connect our best theories 
to the world and to develop an understanding of particular 
phenomena—they mediate between theory and phenomena.  
A clarification of the structure and function of models will 
illuminate the relationship between mathematics and the 
world.

Complex phenomena often require the use of multiple 
models to examine different features of the same 
phenomenon.  A deeper understanding of the phenomenon 
is generated by examining the interconnected system of 
models as a whole.
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